Marketing fun: NetApp industry first of up to 13 million IOPS in a single rack

I’m seeing some really “out there” marketing lately, every vendor (including us) trying to find an angle that sounds exciting while not being an outright lie (most of the time).

A competitor recently claimed an industry first of up to 1.7 million (undefined type) IOPS in a single rack.

The number (which admittedly sounds solid), got me thinking. Was the “industry first” that nobody else did up to 1.7 million IOPS in a single rack?

Would that statement also be true if someone else did up to 5 million IOPS in a rack?

I think that, in the world of marketing, it would – since the faster vendor doesn’t do up to 1.7 million IOPS in a rack, they do up to 5! It’s all about standing out in some way.

Well – let’s have some fun.

I can stuff 21x EF560 systems in a single rack.

Each of those systems can do 650,000 random 4K reads at a stable 800 microseconds (since I like defining my performance stats), 600,000 random 8K reads at under 1ms, and over 300,000 random 32KB reads at under 1ms. Also each system can do 12GB/s of large block sequential reads. This is sustained I/O straight from the SSDs and not RAM cache (the I/O from cache can of course be higher but let’s not count that).

See here for the document showing some of the performance numbers.

Well – some simple math shows a standard 42U rack fully populated with EF560 will do the following:

  • 13,650,000 IOPS.
  • 252GB/s throughput.
  • Up to 548TB of usable SSD capacity using DDP protection (up to 639TB with RAID5).

Not half bad.

Doesn’t quite roll off the tongue though – industry first of up to thirteen million six hundred and fifty thousand IOPS in a single rack. :)

I hope rounding down to 13 million is OK with everyone.



Technorati Tags: , , ,

NetApp Posts Top Ten SPC-1 Price-Performance Results for the new EF560 All-Flash Array

<edit: updated with the changes in the SPC-1 price/performance lineup as of 3/27/2015, fixed some typos>

I’m happy to announce that today we announced the new, third-gen EF560 all-flash array, and also posted SPC-1 results showing the impressive performance it is capable of in this extremely difficult benchmark.

If you have no time to read further – the EF560 achieves, by far, the absolute best price/performance at very low latencies in the SPC-1 benchmark.

The EF line has been enjoying great success for some time now with huge installations in some of the biggest companies in the world with the highest profile applications (as in, things most of us use daily).

The EF560 is the latest all-flash variant of the E-Series family, optimized for very low latency and high performance workloads while ensuring high reliability, cost effectiveness and simplicity.

EF560 highlights

The EF560 runs SANtricity – a lean, heavily optimized storage OS with an impressively short path length (the overhead imposed by the storage OS itself to all data going through the system). In the case of the EF the path length is tiny, around 30 microseconds. Most other storage arrays have a much longer path length as a result of more features and/or coding inefficiencies.

Keeping the path length this impressively short is one of the reasons the EF does away with fashionable All-Flash features like compression and deduplication –  make no mistake, no array that performs those functions is able to sustain that impressively short a path length. There’s just too much in the way. If you really want data reduction and an incredible number of features, we offer that in the FAS line – but the path length naturally isn’t as short as the EF560’s.

A result of the short path length is impressively low latency while maintaining high IOPS with a very reasonable configuration, as you will see further in the article.

Some other EF560 features:

  • No write cliff due to SSD aging or fullness
  • No performance impact due to SSD garbage collection
  • Enterprise components – including SSDs
  • Six-nines available
  • Up to 120x 1.6TB SSDs per system (135TB usable with DDP protection, even more with RAID5/6)
  • High throughput – 12GB/s reads, 8GB/s writes per system (many people forget that DB workloads need not just low latency and high IOPS but also high throughput for certain operations).
  • All software is included in the system price, apart from encryption
  • The system can do snaps and replication, including fully synchronous replication
  • Consistency Group support
  • Several application plug-ins
  • There are no NAS capabilities but instead there is a plethora of block connectivity options: FC, iSCSI, SAS, InfiniBand
  • The usual suspects of RAID types – 5, 10, 6 plus…
  • DDP – Dynamic Disk Pools, a type of declustered RAID6 implementation that performs RAID at the sub-disk level – very handy for large pools, rapid disk rebuilds with minimal performance impact and overall increased flexibility (for instance, you could add a single disk to the system instead of entire RAID groups’ worth)
  • T10-PI to help protect against insidious data corruption that might bypass RAID and normal checksums, and provide end-to-end protection, from the application all the way to the storage device
  • Can also be part of a Clustered Data ONTAP system using the FlexArray license on FAS.

The point of All-Flash Arrays

Going back to the short path length and low latency discussion…

Flash has been a disruptive technology because, if used properly, it allows an unprecedented performance density, at increasingly reasonable costs.

The users of All-Flash Arrays typically fall in two camps:

  1. Users that want lots of features, data reduction algorithms, good but not deterministic performance and not crazy low latencies – 1-2ms is considered sufficient for this use case (with the occasional latency spike), as it is better than hybrid arrays and way better than all-disk systems.
  2. Users that need the absolute lowest possible latency (starting in the microseconds – and definitely less than 1ms worst-case) while maintaining uncompromising reliability for their applications, and are willing to give up certain features to get that kind of performance. The performance for this type of user needs to be deterministic, without weird latency spikes, ever.

The low latency camp typically uses certain applications that need very low latency to generate more revenue. Every microsecond counts, while failures would typically mean significant revenue loss (to the point of making the cost of the storage seem like pocket change).

Some of you may be reading this and be thinking “so what, 1ms to 2ms is a tiny difference, it’s all awesome”. Well – at that level of the game, 2ms is twice the latency of 1ms, and it is a very big deal indeed. For the people that need low latency, a 1ms latency array is half the speed of a 500 microsecond array, even if both do the same IOPS.

You may also be thinking “SSDs that fit in a server’s PCI slot have low latency, right?”

The answer is yes, but what’s missing is the reliability a full-fledged array brings. If the server dies, access is lost. If the card dies, all is lost.

So, when looking for an All-Flash Array, think about what type of flash user you are. What your business actually needs. That will help shape your decisions.

All-Flash Array background operations can affect latency

The more complex All-Flash Arrays have additional capabilities compared to the ultra-low-latency gang, but also have a higher likelihood of producing relatively uneven latency under heavy load while full, and even latency spikes (besides their naturally higher latency due to the longer path length).

For instance, things like cleanup operations, various kinds of background processing that kicks off at different times, and different ways of dealing with I/O depending on how full the array is, can all cause undesirable latency spikes and overall uneven latency. It’s normal for such architectures, but may be unacceptable for certain applications.

Notably, the EF560 doesn’t suffer from such issues. We have been beating competitors in difficult performance situations with the slower predecessors of the EF560, and we will keep doing it with the new, faster system :)

Enough already, show me the numbers!

As a refresher, you may want to read past SPC-1 posts here and here, and my performance primer here.

Important note: SPC-1 is a block-based benchmark with its own I/O blend and, as such, the results from any vendor’s SPC-1 Result should not be compared to marketing IOPS numbers of all reads or metadata-heavy NAS benchmarks like SPEC SFS (which are far easier on systems than the 60% write blend and hotspots of the SPC-1 workload). Indeed, the tested configuration could perform way more “marketing” IOPS – but that’s decidedly not the point of this benchmark.

The EF560 SPC-1 Result links if you want the detail are here (summary) and here (full disclosure). In addition, here’s the link to the “Top 10 by Price-Performance” systems page so you can compare to other submissions (unfortunately, SPC-1 results are normally just alphabetically listed, making it time-consuming to compare systems unless you’re looking at the already sorted Top 10 lists).

The things to look for in SPC-1 submissions

Typically you’re looking for the following things to make sense of an SPC-1 submission:

  • Latency vs IOPS – many submissions will show high IOPS at huge latency, which would be rather useless for the low-latency crowd
  • Sustainability – was performance even or are there constant huge spikes?
  • RAID level – most submissions use RAID10 for speed, what would happen with RAID6?
  • Application Utilization. This one is important yet glossed over. It signifies how much capacity the benchmark consumed vs the overall raw capacity of the system, before RAID, spares etc.
  • Price – discounted or list?

Let’s go over these one by one.

Latency vs IOPS

Our average latency was 0.93ms at 245,011.76 SPC-1 IOPS, and extremely flat during the test:



The SPC-1 rules state the minimum runtime should be 8 hours. There was no significant variation in performance during the test:


RAID level

RAID-10 was used for all testing, with T10-PI Data Assurance enabled (which has a performance penalty but the applications these systems are used for typically need paranoid data integrity). This system would perform slower with RAID5 or RAID6. But for applications where the absolute lowest latency is important, RAID10 is a safe bet, especially with systems that are not write-optimized for RAID6 writes like Data ONTAP is. Not to fret though – the price/performance remained stellar as you will see.

Application Utilization

Our Application Utilization was a very high 46.90% – among the highest of any submission with RAID10 (and among the highest overall, only Data ONTAP submissions can go higher due to RAID-DP).


We did almost completely fill up the resulting RAID10 space, to show that the system’s performance is unaffected when very full. However, Application Utilization is the only metric that really shows how much of the total possible raw capacity the benchmark actually used and signifies how space-efficient the storage was.

Otherwise, someone could do quadruple mirroring of 100TB, fill up the resulting 25TB to 100%, and call that 100% efficient… when in fact it only consumed 25% :)

It is important to note there was no compression or deduplication enabled by any vendor since it is not allowed by the current version of the benchmark.

Compared to other vendors

I wanted to show a comparison between the SPC-1 Top Ten Price-Performance results both in absolute terms and also normalized around 500 microsecond latency to illustrate the fact that very low latency with great performance is still possible at a compelling price point with this solution.

Why 500 microseconds you might ask? Because that’s a good place for very low latency flash storage systems. Why not 1 millisecond you might also ask? Well, 1ms is more commonly found on systems that have more features and don’t concentrate on low latency as much (1ms is half the speed of 500 microseconds).

Here are the Top Ten Price-Performance systems as of March 27, 2015, with SPC-1 Results links if you want to look at things in detail:

  1. X-IO ISE 820 G3 All Flash Array
  2. Dell Storage SC4020 (6 SSDs)
  3. NetApp EF560 Storage System
  4. Huawei OceanStor Dorado2100 G2
  5. HP 3PAR StoreServ 7400 Storage System
  7. Kaminario K2 (28 nodes)
  8. Huawei OCEANSTOR Dorado 5100
  9. Huawei OCEANSTOR Dorado 2100

I will show columns that explain the results of each vendor around 500 microseconds, plus how changing the latency target affects SPC-1 IOPS and also how it affects $/SPC1-IOPS.

The way you determine that lower latency point (SPC calls it “Average Response Time“) is by looking at the graph that shows latency vs SPC-1 IOPS and finding the load point closest to 500 microseconds. Let’s pick Kaminario’s K2 so you learn what to look for:


Notice how the SPC-1 IOPS around half a millisecond is about 10x slower than the performance around 3ms latency. The system picks up after that very rapidly, but if your requirements are for latency to not exceed 500 microseconds, you will be better off spending your money elsewhere (indeed, a very high profile client asked us for 400 microsecond max response at the host level from the first-gen EF systems for their Oracle DBs – this is actually very realistic for many market segments).

Here’s the table with all this analysis done for you. BTW, the “adjusted latency” $/SPC-1 IOPS is not something in the SPC-1 Reports but simply calculated for our example by dividing system price by the SPC-1 IOPS found at the 500 microsecond point in all the reports.

What do the results show?

As submitted, the EF560 is #3 in the absolute Price-Performance ranking. Interestingly, once adjusted for latency around 500 microseconds at list prices (to keep a level playing field), the price/performance of the EF560 is far better than anything else on the chart.

Regarding pricing: Note that some vendors have discounted pricing and some not, always check the SPC-1 report for the prices and don’t just read the summary at the beginning (for example, Fujitsu has 30% discounts showing in the reports, Dell, X-IO and HP all at 45% off – the rest aren’t discounted).

Our price-performance is even better once you adjust for discounts in some of the other results. Update: In this edited version of the chart I show the list price calculations as well. We are #1 in price/performance when adjusted for list pricing even at the higher submitted latencies for all vendors… :)

Another interesting observation is the effects of longer path length on some platforms – for instance, Dell’s lowest reported latency is 0.70ms at a mere 11,249.97 SPC-1 IOPS. Clearly, that is not a system geared towards high performance at very low latency. In addition, the response time for the submitted max SPC-1 IOPS for the Dell system is 4.83ms, firmly in the “nobody cares” category for all-flash systems :) (sorry guys).

Conversely… The LRT (Least Response Time) we submitted for the EF560 was a tiny 0.18ms (180 microseconds) at 24,501.04 SPC-1 IOPS. This is the lowest LRT anyone has ever posted on any array for the SPC-1 benchmark.

Clearly we are doing something right :)

Final thoughts

If your storage needs require very low latency coupled with very high reliability, the EF560 would be an ideal candidate. In addition, the footprint of the system is extremely compact, the SPC-1 results shown are with just a 2U EF560 with 24x 400GB SSDs.

Coupled with Clustered Data ONTAP systems and OnCommand Insight and WorkFlow Automation, NetApp has an incredible portfolio, able to take on any challenge.



Technorati Tags: , , , ,

Beware of storage performance guarantees

Ah, nothing to bring joy to the holidays like a bit of good old-fashioned sales craziness.

Recently we started seeing weird performance “guarantees” by some storage vendors, who seem will try anything for a sale.

Probably by people that haven’t read this.

It goes a bit like this:

“Mr. Customer, we guarantee our storage will do 100,000 IOPS no matter the I/O size and workload”.

Next time a vendor pulls this, show them the following chart. It’s a simple plot of I/O size vs throughput for 100,000 IOPS:

Throughput IO Size

Notice that at a 1MB I/O size the throughput is a cool 100GB/s :)

Then ask that vendor again if they’re sure they still want to make that guarantee. In writing. With severe penalties if it’s not met. As in free gear UNTIL the requirement is met. At any point during the lifetime of the equipment.

Then sit back and enjoy the backpedalling. 

You can make it even more fun, especially if it’s a hybrid storage vendor (mixed spinning and flash storage for caching, with or without autotiering):

  • So you will guarantee those IOPS even if the data is not in cache?
  • For completely random reads spanning the entire pool?
  • For random overwrites? (that should be a fun one, 100GB/s of overwrite activity).
  • For non-zero or at least not crazily compressible data?
  • And what’s the latency for the guarantee? (let’s not forget the big one).
  • etc. You get the point.
Happy Holidays everyone!


When competitors try too hard and miss the point – part two

This will be another FUD-busting post in the two-part series (first part here).

It’s interesting how some competitors, in their quest to beat us at any cost, set aside all common sense.

Recently, an Oracle blogger attempted to understand a document NetApp originally wrote in the 90’s (and which we haven’t really updated since, which is admittedly our bad) that explains how WAFL, the block layout engine of Data ONTAP (the storage OS on the FAS platform) works at a high level.

Apparently, he thinks that we turn everything into 4K I/Os, so if someone tried to read 256K, it would have to become 64 separate I/Os, and, by extension, believes this means no NetApp system running ONTAP can ever sustain good read throughput since the back-end would be inundated with IOPS.

The conclusions he comes to are interesting to say the least. I will copy-paste one of the calculations he makes for a 100% read workload:

Erroneous oracle calcs

I like the SAS logo, I guess this is meant to make the numbers look legit, as if they came from actual SAS testing :)

So this person truly believes that to read 2.6GB/s we need 5,120 drives due to the insane back-end IOPS we purportedly generate :)

This would be hilarious if it were true since it would mean NetApp managed to quietly perpetrate the biggest high tech scam in history, fooling customers for 22 years, and somehow managing to become the industry’s #1 storage OS and remain so.

Because customers are that gullible.


Well – here are some stats from a single 8040 controller (not an HA system with at least 2 controllers, I really mean a single controller doing work, not two or more), with 24 drives, doing over 2.7GB/s reads, at well under 1ms latency, so it’s not even stressed. Thanks to the Australian team for providing the stats:

8040 singlenode

In this example, 2.74GB/s are being read. From stable storage, not cache.

Now, if we do the math the way the competitor would like, it means the back-end is running at over 700,000 4K IOPS. On a single mid-range controller :)

That would be really impressive and hugely wasteful at the same time. Wait – maybe I should turn this around and claim 700,000 4K IOPS at 0.6ms capability per mid-range controller! Imagine how fast the big ones go!

It would also assume 35,000 IOPS per disk at a consistent speed and sub-millisecond response (0.64ms) – because the numbers above are from a single node with only about 20 data SSDs (plus parity and spares).

SSDs are fast but they’re not really that fast, and the purpose of this blog is to illuminate and not obfuscate.

Remember Occam’s razor. What explanation do you think makes more sense here? Pixie-dust drives and controllers, or that the Oracle blogger is massively wrong? :)

Another example – with spinning disks this time

This is a different output, to also illustrate our ability to provide detailed per-disk statistics.

From a single 8060 node, running at over 3GB/s reads during an actual RMAN job and not a benchmark tool (to use a real Oracle application example). There are 192x 10,000 RPM 600GB disks in the config (180x data, 24x parity – we run dual-parity RAID, there were 12x 16-drive RAID groups in a 14+2 config).

Numbers kindly provided by the legendary neto from Brazil (@netofrombrazil on Twitter). Check the link for his blog and all kinds of DB coolness.

This is part of the statit command’s output. I’m not showing all the disks since there are 192 of them after all and each one is a line in the output:

Read chain

The key in these stats is the “chain” column. This shows, per read command, how many blocks were read as a single entity. In this case, the average is about 49, or 196KB per read operation.

Notice the “xfers” – these drives are only doing about 88 physical IOPS on average per drive, and each operation just happens to be large. They could go faster (see the “ut%” column) but that’s just how much they were loaded during the RMAN job.

Again, if we used the blogger’s calculations, this system would have needed over 5,000 drives and generated over 750,000 back-end disk IOPS.

A public apology and retraction would be nice, guys…

Let’s extrapolate this performance at scale.

My examples are for single mid-range controllers. You can multiply that by 24 to see how fast it could go in a full cluster (yes, it’s linear). And that’s not the max these systems will do – just what was in the examples I found that were close to the competitor’s read performance example.

You see, where most of the competition is still dealing with 2-controller systems, NetApp FAS systems running Clustered ONTAP can run 8 engines for block workloads and 24 engines for NAS (8 if mixed), and each engine can have multiple TB of read/write cache (18TB max cache per node currently with ONTAP 8.2.x).

Even if a competitor’s 2 engines are faster than 2 FAS engines, if they stop at 2 and FAS stops at 24, the fight is over before it begins.

People that live in glass houses shouldn’t throw stones.

Since the competitor questioned why NetApp bought Engenio (the acquisition for our E-Series), I have a similar question: Why did Oracle buy Pillar Data? It was purchased after the Sun acquisition. Does that signify a major lack in the ZFS boxes that Pillar is supposed to address?

The Oracle blogger mentioned how their ZFS system had a great score in the SPC-2 tests (which measure throughput and not IOPS). Great.

Interestingly, Oracle ZFS systems can significantly degrade in performance over time (see here especially after writes, deletes and overwrites. Unlike ONTAP systems, ZFS boxes don’t have mechanisms to perform the necessary block reallocations to optimize the data layout in order to bring performance back to original levels (backing up, wiping the box, rebuilding and restoring is not a solution, sorry). There are ways to delay the inevitable, but nothing to fix the core issue.

It follows that the ZFS performance posted in the benchmarks may not be anywhere near what one will get long-term once the ZFS pools are fragmented and full. Making the ZFS SPC-2 benchmark result pretty useless.

NetApp E-Series inherently doesn’t have this fragmentation problem (and is near the top as a price-performance leader in the SPC-2 benchmark, as tested by SGI that resells it). Since there is no long-term speed deterioration issue with E-Series, the throughput you see in the SPC-2 benchmark will be perpetually maintained. The box is in it for the long haul.

Wouldn’t E-Series then be a better choice for a system that needs to constantly deal with such a workload? Both cost-effective and able to sustain high throughput no matter what?

As an aside, I do need to write an article on block layout optimizations available in ONTAP. Many customers are unaware of the possibilities, and competitors use FUD based on observations from back when mud was a novelty. In the meantime, if you’re a NetApp FAS customer, ask your SE and/or check your documentation for the volume option read_realloc space_optimized – great for volumes containing DB data files. Also, check the documentation for the Aggregate option free_space_realloc.

So you’re fast. What else can you do?

There were other “fighting words” in the blogger’s article and they were all about speed and how much faster the new boxes from the competitor are versus some ancient boxes they had from us. Amazing, new controllers being faster than old ones! :)

I see this trend recently, new vendors focusing solely on speed. Guess what – it’s easy to go fast. It’s also easy to be cheap. I’ll save that for a full post another time. But I fully accept that speed sells.

I can build you a commodity-based million-IOPS box during my lunch break. It’s really not that hard. Building a server with dozens of cores and TB of RAM is pretty easy.

But for Enterprise Storage, Reliability is extremely important, far more than sheer speed.

Plus Availability and Serviceability (where the RAS acronym comes from).


Non-Disruptive Operations, even during events that would leave other systems down for extended periods of time.

Extensive automation, management, monitoring and alerting at scale as well.

And of crucial importance is Application Integration, including the ability to perform application-aware data manipulation (fully consistent backups, restores, clones, replication).

So if a system can go fast but can’t do much else, its utility is more towards being a point solution rather than as part of a large, strategic, long-term deployment. Point solutions are useful, yes – but they are also interchangeable with the next cheap fast thing. Most won’t survive.

You know who you are.


Technorati Tags: , , , , , , ,

When competitors try too hard and miss the point

(edit: fixed the images)

After a long hiatus, we return to our regularly scheduled programming with a 2-part series that will address some wild claims Oracle has been making recently.

I’m pleased to introduce Jeffrey Steiner, ex-Oracle employee and all-around DB performance wizard. He helps some of our largest customers with designing high performance solutions for Oracle DBs:

Greetings from a guest-blogger.

I’m one of the original NetApp customers.

I bought my first NetApp in 1995 (I have a 3-digit support case in the system) and it was an F330. I think it came with 512MB SCSI drives, and maxed out at 16GB. It met our performance needs, it was reliable, and it was cost effective.  I continued to buy more over the following years at other employers. We must have been close to the first company to run Oracle databases on NetApp storage. It was late 1999. Again, it met our performance needs, it was reliable, and it was cost effective. My employer immediately prior to joining NetApp was Oracle.

I’m now with NetApp product operations as the principal architect for enterprise solutions, which usually means a big Oracle database is involved, but it can also include DB2, SAS, MongoDB, and others.

I normally ignore competitive blogs, and I had never commented on a blog in my life until I ran into something entitled “Why your NetApp is so slow…” and found this statement:

If an application such MS SQL is writing data in a 64k chunk then before Netapp actually writes it on disk it will have to split it into 16 different 4k writes and 16 different disk IOPS

That’s just openly false. I tried to correct the poster, but was met with nothing but other unsubstantiated claims and insults to the product line. It was clear the blogger wasn’t going to acknowledge their false premise, so I asked Dimitris if I could borrow some time on his blog.

Here’s one of the alleged results of this behavior with ONTAP– the blogger was nice enough to do this calculation for a system reading at 2.6GB/s:




I’m not sure how to interpret this. Are they saying that this alleged horrible, awful design flaw in ONTAP leads to customers buying 50X more drives than required, and our evil sales teams have somehow fooled our customer based into believing this was necessary? Or, is this a claim that ZFS arrays have some kind of amazing ability to use 50X fewer drives?

Given the false premise about ONTAP chopping up any and all IO’s into little 4K blocks and spraying them over the drives, I’m guessing readers are supposed to believe the first interpretation.

Ordinarily, I enjoy this type of marketing. Customers bring this to our attention, and it allows us to explain how things actually work, plus it discredits the account team who provided the information. There was a rep in the UK who used to tell his customers that Oracle had replaced all competing storage arrays in their OnDemand centers with Pillar. I liked it when he said stuff like that. The reason I’m responding is not because I care about the existence of the other blog, but rather that I care about openly false information being spread about how ONTAP works.

How does ONTAP really work?

Some of NetApp’s marketing folks might not like this, but here’s my usual response:

Why does it matter?

It’s an interesting subject, and I’m happy to explain write tetrises and NVMEM write coalescence, and core utilization, but what does that have to do with your business? There was a time we dealt with accusations that NetApp was slow because we has 25 nanometer process CPU’s while the state of the art was 17nm or something like that. These days ‘cores’ seems to come up a lot, as if this happens:


That’s the Brawndo approach to storage sales (

“Our storage arrays contain

5 kinds of technology

which make them AWESOME

unlike other storage arrays which are


A Better Way

I prefer to promote our products based on real business needs. I phrase this especially bluntly when talking to our sales force:

When you are working with a new enterprise customer, shut up about NetApp for at least the first 45 minutes of the discussion

I say that all the time. Not everyone understands it. If you charge into a situation saying, “NetApp is AWESOME, unlike EMC who is NOT AWESOME” the whole conversation turns into PowerPoint wars, links to silly blog articles like the one that prompted this discussion, and whoever wins the deal will win it based on a combination of luck and speaking ability. Providing value will become secondary.

I’m usually working in engineeringland, but in major deals I get involved directly. Let’s say we have a customer with a database performance issue and they’re looking for new storage. I avoid PowerPoint and usually request Oracle AWR/statspack data. That allows me to size a solution with extreme accuracy. I know exactly what the customer needs, I know their performance bottlenecks, and I know whatever solution I propose will meet their requirements. That reduces risk on both sides. It also reduces costs because I won’t be proposing unnecessary capabilities.

None of this has anything to do with who’s got the better SPC-2 benchmark, unless you plan on buying that exact hardware described, configuring it exactly the same way, and then you somehow make money based on running SPC-2 all day.

Here’s an actual Oracle AWR report from a real customer using NetApp. I have pruned the non-storage related parameters to make it easier to read, and I have anonymized the identifying data. This is a major international insurance company calculating its balance sheet at end-of-month. I know of at least 9 or 10 customers that have similar workloads and configurations.


Look at the line that says “Physical reads”. That’s the blocks read per second. Now look at “Std Block Size”. That’s the block size. This is 90K physical block reads per second, which is 90K IOPS in a sense. The IO is predominantly db_file_scattered_read, which counter-intuitively is sequential IO. A parameter called db_file_multiblock_read_count is set to 128. This means Oracle is attempting to read 128 blocks at a time, which equates to 1MB block sizes. It’s a sequential IO read of a file.

Here’s what we got:

1)     89K read “IOPS”, sort of.

2)     Those 89K read IOPS are actually packaged as units of 8 blocks in a single 64k unit.

3)     3K write IOPS

4)     8MB/sec of redo logging.

The most important point here is that the customer needed about 800MB/sec of throughput, they liked the cost savings of IP, and the storage system is meeting their needs. They refresh with NetApp on occasion, so obviouly they’re happy with the TCO.

To put a final nail in the coffin of the Oracle blogger’s argument, if we are really doing 89K block reads/sec, and those blocks are really chopped up into 4k units, that’s a total of about 180,000 4k IOPS that would need to be serviced at the disk layer, per the blogger’s calculation.

  • Our opposing blogger thinks that  would require about 1000 disks in theory
  • This customer is using 132 drives in a real production system.

There’s also a ton of other data on those drives for other workloads. That’s why we have QoS – it allows mixed workloads to play nicely on a single unified system.

To make this even more interesting, the data would have been randomly written in 8k units, yet they are still able to read at 800MB/sec? How is this possible? For one, ONTAP does NOT break up individual IO’s into 4k units. It tries very, very hard to never break up an IO across disks, although that can happen on occasion, notably if you fill you system up to 99% capacity or do something very much against best practices.

The main reason ONTAP can provide good sequential performance with randomly written data is the blocks are organized contiguously on disk. Strictly speaking, there is a sort of ‘fragmentation’ as our competitors like to say, but it’s not like randomly spraying data everywhere. It’s more like large contiguous chunks of data are evenly distributed across the disks. As long as those contiguous segments are sufficiently large, readahead can ensure good throughput.

That’s somewhat of an oversimplification, but it would take a couple hours and a whiteboard to explain the complete details. 20+ years of engineering can’t exactly be summarized in a couple paragraphs. The document misrepresented by the original blog was clearly dated 2006 (and that was to slightly refresh the original posting back in the nineties), and while it’s still correct as far as I can see, it’s also lacking information on the enhancements and how we package data onto disks.

By the way, this database mentioned above? It’s virtualized in VMware too.

Why did I pick an example of only 90K IOPS?  My point was this customer needed 90K IOPS, so they bought 90K IOPS.

If you need this performance:


then let us know. Not a problem. This is from a large SAP environment for a manufacturing company. It beats me what they’re doing, because this is about 10X more IO than what we typically see for this type of SAP application. Maybe they just built a really, really good network that permits this level of IO performance even though they don’t need it.

In any case, that’s 201,734 blocks/sec using a block size of 8k. That’s about 2GB/sec, and it’s from a dual-controller FAS3220 configuration which is rather old (and was the smallest box in its range when it was new).

Sing the bizarro-universe math from the other blog, these 200K IOPS would have been chopped up into 4k blocks and require a total of 400K back-end disk IOPS to service the workload. Divided by 125 IOPS/drive, we have a requirement for 3200 drives. It was ACTUALLY using more like 200 drives.

We can do a lot more, especially with the newer platforms and ONTAP clustering, which would enable up to 24 controllers in the storage cluster. So the performance limits per cluster are staggeringly high.


To put a really interesting (and practical) twist on this, sequential IO in the Oracle realm is probably going to become less important.  You know why? Oracle’s new in-memory feature. Me and several others were floored when we got the first debrief on Oracle In-Memory. I couldn’t have asked for a better implementation if I was in charge of Oracle engineering myself. Folks at NetApp started asking what this means for us, and here’s my list:

  1. Oracle customers will be spending less on storage.

That’s it. That’s my list. The data format on disk remains unchanged, the backup/restore process is the same, the data commitment process is the same. All the NetApp features that earned us around 12,500 Oracle customers are still applicable.

The difference is customers will need smaller controllers, fewer disks, and less bandwidth because they’ll be able to replace a lot of the brute-force full table scan activity with a little In-Memory magic. No, the In-Memory licenses aren’t free, but the benefits will be substantial.

SPC-2 Benchmarks and Engenio Purchases

The other blog demanded two additional answers:

1)     Why hasn’t NetApp done an SPC-2 bencharmk?

2)     Why did NetApp purchase Engenio?


I personally don’t know why we haven’t done an SPC-2 benchmark with ONTAP, but they are rather expensive and it’s aimed at large sequential IO processing. That’s not exactly the prime use case for FAS systems, but not because they’re weak on it. I’ve got AWR reports well into the GB/sec, so it certainly can do all the sequential IO you want in the real world, but what workloads are those?

I see little point in using an ONTAP system for most (but certainly not all) such workloads because the features overall aren’t applicable. I’m aware of some VOD applications on ONTAP where replication and backups were important. Overall, if you want that type of workload, you’d specify a minimum bandwidth requirement, capacity requirement, and then evaluate the proposals from vendors. Cost is usually the deciding factor.

Engenio Acquisition

Again, my personal opinion here on why NetApp acquired Engenio.

Tom Georgens, our CEO, spent 9 years leading Engenio and obviously knew the company and its financials well. I can’t think of any possible way to know you’re getting value for money than having someone in Georgens’ position making this decision.

Here’s the press release about it:

Engenio will enable NetApp to address emerging and fast-growing market segments such as video, including full-motion video capture and digital video surveillance, as well as high performance computing applications, such as genomics sequencing and scientific research.

Yup, sounds about right. That’s all about maximum capacity, high throughput, and low cost. In contrast, ONTAP is about manageability and advanced features. Those are aimed at different sets of business drivers.

Hey, check this out. Here’s an SEC filing:

Since the acquisition of the Engenio business in May 2011, NetApp has been offering the formerly-branded Engenio products as NetApp E-Series storage arrays for SAN workloads. Core differentiators of this price-performance leader include enterprise reliability, availability and scalability. Customers choose E-Series for general purpose computing, high-density content repositories, video surveillance, and high performance computing workloads where data is managed by the application and the advanced data management capabilities of Data ONTAP storage operating system are not required.

Key point here is “where the advanced data management capabilities of Data ONTAP are not required.” It also reflected my logic in storage decisions prior to joining NetApp, and it reflects the message I still repeat to account teams:

  1. Is there any particular feature in ONTAP that is useful for your customer’s actual business requirements? Would they like to snapshot something? Do they need asynchronous replication? Archival? SnapLock? Scale-out clusters with many nodes? Non-disruptive everything? Think carefully, and ask lots of questions.
  2. If the answer is “yes”, go with ONTAP.
  3. If the answer is “no”, go with E-Series.

That’s what I did. I probably influenced or approved around $5M in total purchases. It wasn’t huge, but it wasn’t nothing either. I’d guess we went ONTAP about 70% of the time, but I had a lot of IBM DS3K arrays around too, now known as E-Series.

“Dumb Storage”

I’ve annoyed the E-Series team a few times by referring to it as “dumb storage”, but I mean that in the nicest possible way. It’s primary job is to just sit there and work. It needs to do it fast, reliably, and cost effectively, but on a day-to-day basis it’s not generally doing anything all that advanced.

In some ways, the reliability was a weakness. It was so reliable, that we forgot it was there at all, and we’d do something like changing the email server addresses, and forget to update the RAS feature of the E-Series. Without email notification, it can take a couple years before someone notices the LED that indicates a drive needs replacement.