Architecture has long term scalability implications for All Flash Appliances

Recently, many vendors announced the availability of large SSDs. It’s not extremely exciting – it’s just a larger storage medium. Sure, it’s really advanced 3D NAND, it’s fast and ultra-reliable, and will allow some nicely dense configurations at a reduced $/GB. Another day in Enterprise Storage Land.

But, ultimately, that’s how drives roll – they get bigger. And in the case of SSD, the roadmaps seem extremely aggressive regarding capacities, with 100TB per device coming.

Then I realized that several vendors don’t have large SSD capacities available.

But why? Why ignore such a seemingly easy and hugely cost-effective way to increase density?

In this post I will attempt to explain why certain architectural decisions may lead to inflexible design constructs that can have long-term flexibility and scalability ramifications.

Continue reading “Architecture has long term scalability implications for All Flash Appliances”

NetApp Enterprise Grade Flash

June 23rd marked the release of new NetApp Enterprise Flash technology. The release consists of:

  • New ONTAP 8.3.1 with significant performance, feature and usability enhancements
  • New Inline Storage Efficiencies
  • New All-Flash FAS systems (AFF works only with SSDs)
  • New, aggressive pricing model
  • New maintenance options (price protection on warranty for up to 7 years, even if you buy less warranty up front)

Continue reading “NetApp Enterprise Grade Flash”

NetApp posts SPC-1 Top Ten Performance results for its high end systems – Tier 1 meets high functionality and high performance

It’s been a while since our last SPC-1 benchmark submission with high-end systems in 2012. Since then we launched all new systems, and went from ONTAP 8.1 to ONTAP 8.3, big jumps in both hardware and software.

In 2012 we posted an SPC-1 result with a 6-node FAS6240 cluster  – not our biggest system at the time but we felt it was more representative of a realistic solution and used a hybrid configuration (spinning disks boosted by flash caching technology). It still got the best overall balance of low latency (Average Response Time or ART in SPC-1 parlance, to be used from now on), high SPC-1 IOPS, price, scalability, data resiliency and functionality compared to all other spinning disk systems at the time.

Today (April 22, 2015) we published SPC-1 results with an 8-node all-flash high-end FAS8080 cluster to illustrate the performance of the largest current NetApp FAS systems in this industry-standard benchmark.

Continue reading “NetApp posts SPC-1 Top Ten Performance results for its high end systems – Tier 1 meets high functionality and high performance”

How to decipher EMC’s new VNX pre-announcement and look behind the marketing.

It was with interest that I watched some of EMC’s announcements during EMC World. Partly due to competitor awareness, and partly due to being an irrepressible nerd, hoping for something really cool.

BTW: Thanks to Mark Kulacz for assisting with the proof points. Mark, as much as it pains me to admit so, is quite possibly an even bigger nerd than I am.

So… EMC did deliver something. A demo of the possible successor to VNX (VNX2?), unavailable as of this writing (indeed, a lot of fuss was made about it being lab only etc).

Continue reading “How to decipher EMC’s new VNX pre-announcement and look behind the marketing.”

Are some flash storage vendors optimizing too heavily for short-lived NAND flash?

I really resisted using the “flash in the pan” phrase in the title… first, because the term is overused and second, because I don’t believe solid state is of limited value. On the contrary.

However, I am noticing an interesting trend among some newcomers in the array business, desperate to find a flash niche to compete in:

Writing their storage OS around very specific NAND flash technologies. Almost as bad as writing an entire storage OS to support a single hypervisor technology, but that’s a story for another day.

Continue reading “Are some flash storage vendors optimizing too heavily for short-lived NAND flash?”