Calculating the true cost of space efficient Flash solutions

In this post I will try to help you understand how to objectively calculate the cost of space-efficient storage solutions – there’s just too much misinformation out there and it’s getting irritating since certain vendors aren’t exactly honest with how they do certain calculations…

A brief history lesson:

The faster a storage device, the smaller and more expensive it usually is. Flash was initially insanely expensive relative to spinning disk, so it was used in small amounts, typically as a tier and/or cache augmentation.

And so it came to be that flash-based storage systems started implementing some of the more interesting space efficiency techniques around. Interesting because it’s algorithmically easy to reduce data dramatically, but hard to do under high load while maintaining impressive IOPS and low latency.

Space efficiencies plus lower flash media costs bring us to today’s ability to use all-flash storage in ever-increasingly cost-effective amounts.

But how does one figure out the best deal?

There are some factors I won’t get into in this article. Company size and viability, support staff strength, maturity of the code, automation, overall features etc. all may play a huge role depending on the environment and requirements (and, indeed, will often eliminate several of the players from further consideration). However, I want to focus on the basics.

Recommended metric: Cost per effective TB

It’s easy to get lost in the hype. One company says they reduce by 3:1, another might say 5:1, yet another 10:1, etc. The high efficiency ratios seem to be attractive, right?

Well – you’re not paying for a high efficiency ratio. What you are paying for is for usable capacity.

If all solutions cost the same, the systems with high efficiency ratios would win this battle every day of the week and twice on Sundays.

However, solutions don’t all cost the same. Ask your vendor what the projected effective capacity will be for each specific configuration, and the Cost/Effective TB is a trivial calculation.

But there’s one more thing to do in order for the calculation to be correct:

Insist on calculating the efficiency ratio yourself.

Most storage systems will show a nice picture in the GUI with an overall efficiency ratio. Looks nice and easy. Well – the devil is in the details.

If a vendor is upfront about how they measure efficiency, your numbers might make sense.

This is where you trust but verify. Some pointers:

  • Take a note of the initial usable space before putting anything on the system.
  • If you store a 1TB DB and do nothing else to the data, what’s the efficiency?
  • Calculate the ratio yourself! Divide the amount of capacity the data is taking in the OS by the amount it’s taking on the storage.
  • Does the number make sense given the size of the data you just put on the system and how much usable space is left now?
  • If you take 10 snapshots of the data, what’s the efficiency? How about if you delete the snaps, does the efficiency change?
  • If you take a clone of the DB, what’s the efficiency?
  • If you delete the clone you just took, what’s the efficiency?
  • Create a large LUN (10TB for example) and only store 1TB of data in it. What’s the efficiency? Do you count thin provisioning as data reduction?
  • Does this all add up if you do the math manually instead of the GUI doing it for you?
  • Does it all meet your expectations? For example, if a vendor is claiming 5:1 reduction, can you actually store 5 different DBs in the space of one? Or do they really mean something else? That’s a pretty easy test…

You see, most vendors count savings a bit differently. In the examples above, that 1TB DB, if stored in a 10TB LUN, and cloned 10 times, will probably result in a very high efficiency number. It doesn’t mean however that 10 different DBs of the same size would have nearly the same efficiency ratio.

If you don’t have time to do a test in-house, have the vendor prove their claims and show how they do their math in their labs while you watch. You will typically find that each data type has a wildly different space efficiency ratio.

The bottom line

It’s pretty easy. Figure out the efficiency ratio on your own based on how you expect to use the system, then plug that ratio into the Price/Effective TB formula like so:

Real Cost per TB = Price/(Usable TB * Real Efficiency Ratio as a multiplier)

And, finally, a word on capacity guarantees:

Some vendors will guarantee capacity efficiencies. Always, always demand to see the fine print. If a vendor insists they will guarantee x:1 efficiency, have them sign an official legally binding agreement that has the backing of the vendor’s HQ (and isn’t some desperate local sales office ploy that might not be worth the paper it’s printed on).

Insist the guarantee states you will get that claimed efficiency no matter what you’re storing on the box.

Notice how quickly the small print will come :)


Technorati Tags: , , , ,

When competitors try too hard and miss the point – part two

This will be another FUD-busting post in the two-part series (first part here).

It’s interesting how some competitors, in their quest to beat us at any cost, set aside all common sense.

Recently, an Oracle blogger attempted to understand a document NetApp originally wrote in the 90’s (and which we haven’t really updated since, which is admittedly our bad) that explains how WAFL, the block layout engine of Data ONTAP (the storage OS on the FAS platform) works at a high level.

Apparently, he thinks that we turn everything into 4K I/Os, so if someone tried to read 256K, it would have to become 64 separate I/Os, and, by extension, believes this means no NetApp system running ONTAP can ever sustain good read throughput since the back-end would be inundated with IOPS.

The conclusions he comes to are interesting to say the least. I will copy-paste one of the calculations he makes for a 100% read workload:

Erroneous oracle calcs

I like the SAS logo, I guess this is meant to make the numbers look legit, as if they came from actual SAS testing :)

So this person truly believes that to read 2.6GB/s we need 5,120 drives due to the insane back-end IOPS we purportedly generate :)

This would be hilarious if it were true since it would mean NetApp managed to quietly perpetrate the biggest high tech scam in history, fooling customers for 22 years, and somehow managing to become the industry’s #1 storage OS and remain so.

Because customers are that gullible.


Well – here are some stats from a single 8040 controller (not an HA system with at least 2 controllers, I really mean a single controller doing work, not two or more), with 24 drives, doing over 2.7GB/s reads, at well under 1ms latency, so it’s not even stressed. Thanks to the Australian team for providing the stats:

8040 singlenode

In this example, 2.74GB/s are being read. From stable storage, not cache.

Now, if we do the math the way the competitor would like, it means the back-end is running at over 700,000 4K IOPS. On a single mid-range controller :)

That would be really impressive and hugely wasteful at the same time. Wait – maybe I should turn this around and claim 700,000 4K IOPS at 0.6ms capability per mid-range controller! Imagine how fast the big ones go!

It would also assume 35,000 IOPS per disk at a consistent speed and sub-millisecond response (0.64ms) – because the numbers above are from a single node with only about 20 data SSDs (plus parity and spares).

SSDs are fast but they’re not really that fast, and the purpose of this blog is to illuminate and not obfuscate.

Remember Occam’s razor. What explanation do you think makes more sense here? Pixie-dust drives and controllers, or that the Oracle blogger is massively wrong? :)

Another example – with spinning disks this time

This is a different output, to also illustrate our ability to provide detailed per-disk statistics.

From a single 8060 node, running at over 3GB/s reads during an actual RMAN job and not a benchmark tool (to use a real Oracle application example). There are 192x 10,000 RPM 600GB disks in the config (180x data, 24x parity – we run dual-parity RAID, there were 12x 16-drive RAID groups in a 14+2 config).

Numbers kindly provided by the legendary neto from Brazil (@netofrombrazil on Twitter). Check the link for his blog and all kinds of DB coolness.

This is part of the statit command’s output. I’m not showing all the disks since there are 192 of them after all and each one is a line in the output:

Read chain

The key in these stats is the “chain” column. This shows, per read command, how many blocks were read as a single entity. In this case, the average is about 49, or 196KB per read operation.

Notice the “xfers” – these drives are only doing about 88 physical IOPS on average per drive, and each operation just happens to be large. They could go faster (see the “ut%” column) but that’s just how much they were loaded during the RMAN job.

Again, if we used the blogger’s calculations, this system would have needed over 5,000 drives and generated over 750,000 back-end disk IOPS.

A public apology and retraction would be nice, guys…

Let’s extrapolate this performance at scale.

My examples are for single mid-range controllers. You can multiply that by 24 to see how fast it could go in a full cluster (yes, it’s linear). And that’s not the max these systems will do – just what was in the examples I found that were close to the competitor’s read performance example.

You see, where most of the competition is still dealing with 2-controller systems, NetApp FAS systems running Clustered ONTAP can run 8 engines for block workloads and 24 engines for NAS (8 if mixed), and each engine can have multiple TB of read/write cache (18TB max cache per node currently with ONTAP 8.2.x).

Even if a competitor’s 2 engines are faster than 2 FAS engines, if they stop at 2 and FAS stops at 24, the fight is over before it begins.

People that live in glass houses shouldn’t throw stones.

Since the competitor questioned why NetApp bought Engenio (the acquisition for our E-Series), I have a similar question: Why did Oracle buy Pillar Data? It was purchased after the Sun acquisition. Does that signify a major lack in the ZFS boxes that Pillar is supposed to address?

The Oracle blogger mentioned how their ZFS system had a great score in the SPC-2 tests (which measure throughput and not IOPS). Great.

Interestingly, Oracle ZFS systems can significantly degrade in performance over time (see here especially after writes, deletes and overwrites. Unlike ONTAP systems, ZFS boxes don’t have mechanisms to perform the necessary block reallocations to optimize the data layout in order to bring performance back to original levels (backing up, wiping the box, rebuilding and restoring is not a solution, sorry). There are ways to delay the inevitable, but nothing to fix the core issue.

It follows that the ZFS performance posted in the benchmarks may not be anywhere near what one will get long-term once the ZFS pools are fragmented and full. Making the ZFS SPC-2 benchmark result pretty useless.

NetApp E-Series inherently doesn’t have this fragmentation problem (and is near the top as a price-performance leader in the SPC-2 benchmark, as tested by SGI that resells it). Since there is no long-term speed deterioration issue with E-Series, the throughput you see in the SPC-2 benchmark will be perpetually maintained. The box is in it for the long haul.

Wouldn’t E-Series then be a better choice for a system that needs to constantly deal with such a workload? Both cost-effective and able to sustain high throughput no matter what?

As an aside, I do need to write an article on block layout optimizations available in ONTAP. Many customers are unaware of the possibilities, and competitors use FUD based on observations from back when mud was a novelty. In the meantime, if you’re a NetApp FAS customer, ask your SE and/or check your documentation for the volume option read_realloc space_optimized – great for volumes containing DB data files. Also, check the documentation for the Aggregate option free_space_realloc.

So you’re fast. What else can you do?

There were other “fighting words” in the blogger’s article and they were all about speed and how much faster the new boxes from the competitor are versus some ancient boxes they had from us. Amazing, new controllers being faster than old ones! :)

I see this trend recently, new vendors focusing solely on speed. Guess what – it’s easy to go fast. It’s also easy to be cheap. I’ll save that for a full post another time. But I fully accept that speed sells.

I can build you a commodity-based million-IOPS box during my lunch break. It’s really not that hard. Building a server with dozens of cores and TB of RAM is pretty easy.

But for Enterprise Storage, Reliability is extremely important, far more than sheer speed.

Plus Availability and Serviceability (where the RAS acronym comes from).


Non-Disruptive Operations, even during events that would leave other systems down for extended periods of time.

Extensive automation, management, monitoring and alerting at scale as well.

And of crucial importance is Application Integration, including the ability to perform application-aware data manipulation (fully consistent backups, restores, clones, replication).

So if a system can go fast but can’t do much else, its utility is more towards being a point solution rather than as part of a large, strategic, long-term deployment. Point solutions are useful, yes – but they are also interchangeable with the next cheap fast thing. Most won’t survive.

You know who you are.


Technorati Tags: , , , , , , ,

When competitors try too hard and miss the point

(edit: fixed the images)

After a long hiatus, we return to our regularly scheduled programming with a 2-part series that will address some wild claims Oracle has been making recently.

I’m pleased to introduce Jeffrey Steiner, ex-Oracle employee and all-around DB performance wizard. He helps some of our largest customers with designing high performance solutions for Oracle DBs:

Greetings from a guest-blogger.

I’m one of the original NetApp customers.

I bought my first NetApp in 1995 (I have a 3-digit support case in the system) and it was an F330. I think it came with 512MB SCSI drives, and maxed out at 16GB. It met our performance needs, it was reliable, and it was cost effective.  I continued to buy more over the following years at other employers. We must have been close to the first company to run Oracle databases on NetApp storage. It was late 1999. Again, it met our performance needs, it was reliable, and it was cost effective. My employer immediately prior to joining NetApp was Oracle.

I’m now with NetApp product operations as the principal architect for enterprise solutions, which usually means a big Oracle database is involved, but it can also include DB2, SAS, MongoDB, and others.

I normally ignore competitive blogs, and I had never commented on a blog in my life until I ran into something entitled “Why your NetApp is so slow…” and found this statement:

If an application such MS SQL is writing data in a 64k chunk then before Netapp actually writes it on disk it will have to split it into 16 different 4k writes and 16 different disk IOPS

That’s just openly false. I tried to correct the poster, but was met with nothing but other unsubstantiated claims and insults to the product line. It was clear the blogger wasn’t going to acknowledge their false premise, so I asked Dimitris if I could borrow some time on his blog.

Here’s one of the alleged results of this behavior with ONTAP– the blogger was nice enough to do this calculation for a system reading at 2.6GB/s:




I’m not sure how to interpret this. Are they saying that this alleged horrible, awful design flaw in ONTAP leads to customers buying 50X more drives than required, and our evil sales teams have somehow fooled our customer based into believing this was necessary? Or, is this a claim that ZFS arrays have some kind of amazing ability to use 50X fewer drives?

Given the false premise about ONTAP chopping up any and all IO’s into little 4K blocks and spraying them over the drives, I’m guessing readers are supposed to believe the first interpretation.

Ordinarily, I enjoy this type of marketing. Customers bring this to our attention, and it allows us to explain how things actually work, plus it discredits the account team who provided the information. There was a rep in the UK who used to tell his customers that Oracle had replaced all competing storage arrays in their OnDemand centers with Pillar. I liked it when he said stuff like that. The reason I’m responding is not because I care about the existence of the other blog, but rather that I care about openly false information being spread about how ONTAP works.

How does ONTAP really work?

Some of NetApp’s marketing folks might not like this, but here’s my usual response:

Why does it matter?

It’s an interesting subject, and I’m happy to explain write tetrises and NVMEM write coalescence, and core utilization, but what does that have to do with your business? There was a time we dealt with accusations that NetApp was slow because we has 25 nanometer process CPU’s while the state of the art was 17nm or something like that. These days ‘cores’ seems to come up a lot, as if this happens:


That’s the Brawndo approach to storage sales (

“Our storage arrays contain

5 kinds of technology

which make them AWESOME

unlike other storage arrays which are


A Better Way

I prefer to promote our products based on real business needs. I phrase this especially bluntly when talking to our sales force:

When you are working with a new enterprise customer, shut up about NetApp for at least the first 45 minutes of the discussion

I say that all the time. Not everyone understands it. If you charge into a situation saying, “NetApp is AWESOME, unlike EMC who is NOT AWESOME” the whole conversation turns into PowerPoint wars, links to silly blog articles like the one that prompted this discussion, and whoever wins the deal will win it based on a combination of luck and speaking ability. Providing value will become secondary.

I’m usually working in engineeringland, but in major deals I get involved directly. Let’s say we have a customer with a database performance issue and they’re looking for new storage. I avoid PowerPoint and usually request Oracle AWR/statspack data. That allows me to size a solution with extreme accuracy. I know exactly what the customer needs, I know their performance bottlenecks, and I know whatever solution I propose will meet their requirements. That reduces risk on both sides. It also reduces costs because I won’t be proposing unnecessary capabilities.

None of this has anything to do with who’s got the better SPC-2 benchmark, unless you plan on buying that exact hardware described, configuring it exactly the same way, and then you somehow make money based on running SPC-2 all day.

Here’s an actual Oracle AWR report from a real customer using NetApp. I have pruned the non-storage related parameters to make it easier to read, and I have anonymized the identifying data. This is a major international insurance company calculating its balance sheet at end-of-month. I know of at least 9 or 10 customers that have similar workloads and configurations.


Look at the line that says “Physical reads”. That’s the blocks read per second. Now look at “Std Block Size”. That’s the block size. This is 90K physical block reads per second, which is 90K IOPS in a sense. The IO is predominantly db_file_scattered_read, which counter-intuitively is sequential IO. A parameter called db_file_multiblock_read_count is set to 128. This means Oracle is attempting to read 128 blocks at a time, which equates to 1MB block sizes. It’s a sequential IO read of a file.

Here’s what we got:

1)     89K read “IOPS”, sort of.

2)     Those 89K read IOPS are actually packaged as units of 8 blocks in a single 64k unit.

3)     3K write IOPS

4)     8MB/sec of redo logging.

The most important point here is that the customer needed about 800MB/sec of throughput, they liked the cost savings of IP, and the storage system is meeting their needs. They refresh with NetApp on occasion, so obviouly they’re happy with the TCO.

To put a final nail in the coffin of the Oracle blogger’s argument, if we are really doing 89K block reads/sec, and those blocks are really chopped up into 4k units, that’s a total of about 180,000 4k IOPS that would need to be serviced at the disk layer, per the blogger’s calculation.

  • Our opposing blogger thinks that  would require about 1000 disks in theory
  • This customer is using 132 drives in a real production system.

There’s also a ton of other data on those drives for other workloads. That’s why we have QoS – it allows mixed workloads to play nicely on a single unified system.

To make this even more interesting, the data would have been randomly written in 8k units, yet they are still able to read at 800MB/sec? How is this possible? For one, ONTAP does NOT break up individual IO’s into 4k units. It tries very, very hard to never break up an IO across disks, although that can happen on occasion, notably if you fill you system up to 99% capacity or do something very much against best practices.

The main reason ONTAP can provide good sequential performance with randomly written data is the blocks are organized contiguously on disk. Strictly speaking, there is a sort of ‘fragmentation’ as our competitors like to say, but it’s not like randomly spraying data everywhere. It’s more like large contiguous chunks of data are evenly distributed across the disks. As long as those contiguous segments are sufficiently large, readahead can ensure good throughput.

That’s somewhat of an oversimplification, but it would take a couple hours and a whiteboard to explain the complete details. 20+ years of engineering can’t exactly be summarized in a couple paragraphs. The document misrepresented by the original blog was clearly dated 2006 (and that was to slightly refresh the original posting back in the nineties), and while it’s still correct as far as I can see, it’s also lacking information on the enhancements and how we package data onto disks.

By the way, this database mentioned above? It’s virtualized in VMware too.

Why did I pick an example of only 90K IOPS?  My point was this customer needed 90K IOPS, so they bought 90K IOPS.

If you need this performance:


then let us know. Not a problem. This is from a large SAP environment for a manufacturing company. It beats me what they’re doing, because this is about 10X more IO than what we typically see for this type of SAP application. Maybe they just built a really, really good network that permits this level of IO performance even though they don’t need it.

In any case, that’s 201,734 blocks/sec using a block size of 8k. That’s about 2GB/sec, and it’s from a dual-controller FAS3220 configuration which is rather old (and was the smallest box in its range when it was new).

Sing the bizarro-universe math from the other blog, these 200K IOPS would have been chopped up into 4k blocks and require a total of 400K back-end disk IOPS to service the workload. Divided by 125 IOPS/drive, we have a requirement for 3200 drives. It was ACTUALLY using more like 200 drives.

We can do a lot more, especially with the newer platforms and ONTAP clustering, which would enable up to 24 controllers in the storage cluster. So the performance limits per cluster are staggeringly high.


To put a really interesting (and practical) twist on this, sequential IO in the Oracle realm is probably going to become less important.  You know why? Oracle’s new in-memory feature. Me and several others were floored when we got the first debrief on Oracle In-Memory. I couldn’t have asked for a better implementation if I was in charge of Oracle engineering myself. Folks at NetApp started asking what this means for us, and here’s my list:

  1. Oracle customers will be spending less on storage.

That’s it. That’s my list. The data format on disk remains unchanged, the backup/restore process is the same, the data commitment process is the same. All the NetApp features that earned us around 12,500 Oracle customers are still applicable.

The difference is customers will need smaller controllers, fewer disks, and less bandwidth because they’ll be able to replace a lot of the brute-force full table scan activity with a little In-Memory magic. No, the In-Memory licenses aren’t free, but the benefits will be substantial.

SPC-2 Benchmarks and Engenio Purchases

The other blog demanded two additional answers:

1)     Why hasn’t NetApp done an SPC-2 bencharmk?

2)     Why did NetApp purchase Engenio?


I personally don’t know why we haven’t done an SPC-2 benchmark with ONTAP, but they are rather expensive and it’s aimed at large sequential IO processing. That’s not exactly the prime use case for FAS systems, but not because they’re weak on it. I’ve got AWR reports well into the GB/sec, so it certainly can do all the sequential IO you want in the real world, but what workloads are those?

I see little point in using an ONTAP system for most (but certainly not all) such workloads because the features overall aren’t applicable. I’m aware of some VOD applications on ONTAP where replication and backups were important. Overall, if you want that type of workload, you’d specify a minimum bandwidth requirement, capacity requirement, and then evaluate the proposals from vendors. Cost is usually the deciding factor.

Engenio Acquisition

Again, my personal opinion here on why NetApp acquired Engenio.

Tom Georgens, our CEO, spent 9 years leading Engenio and obviously knew the company and its financials well. I can’t think of any possible way to know you’re getting value for money than having someone in Georgens’ position making this decision.

Here’s the press release about it:

Engenio will enable NetApp to address emerging and fast-growing market segments such as video, including full-motion video capture and digital video surveillance, as well as high performance computing applications, such as genomics sequencing and scientific research.

Yup, sounds about right. That’s all about maximum capacity, high throughput, and low cost. In contrast, ONTAP is about manageability and advanced features. Those are aimed at different sets of business drivers.

Hey, check this out. Here’s an SEC filing:

Since the acquisition of the Engenio business in May 2011, NetApp has been offering the formerly-branded Engenio products as NetApp E-Series storage arrays for SAN workloads. Core differentiators of this price-performance leader include enterprise reliability, availability and scalability. Customers choose E-Series for general purpose computing, high-density content repositories, video surveillance, and high performance computing workloads where data is managed by the application and the advanced data management capabilities of Data ONTAP storage operating system are not required.

Key point here is “where the advanced data management capabilities of Data ONTAP are not required.” It also reflected my logic in storage decisions prior to joining NetApp, and it reflects the message I still repeat to account teams:

  1. Is there any particular feature in ONTAP that is useful for your customer’s actual business requirements? Would they like to snapshot something? Do they need asynchronous replication? Archival? SnapLock? Scale-out clusters with many nodes? Non-disruptive everything? Think carefully, and ask lots of questions.
  2. If the answer is “yes”, go with ONTAP.
  3. If the answer is “no”, go with E-Series.

That’s what I did. I probably influenced or approved around $5M in total purchases. It wasn’t huge, but it wasn’t nothing either. I’d guess we went ONTAP about 70% of the time, but I had a lot of IBM DS3K arrays around too, now known as E-Series.

“Dumb Storage”

I’ve annoyed the E-Series team a few times by referring to it as “dumb storage”, but I mean that in the nicest possible way. It’s primary job is to just sit there and work. It needs to do it fast, reliably, and cost effectively, but on a day-to-day basis it’s not generally doing anything all that advanced.

In some ways, the reliability was a weakness. It was so reliable, that we forgot it was there at all, and we’d do something like changing the email server addresses, and forget to update the RAS feature of the E-Series. Without email notification, it can take a couple years before someone notices the LED that indicates a drive needs replacement.


So now it is OK to sell systems using “Raw IOPS”???

As the self-proclaimed storage vigilante, I will keep bringing these idiocies up as I come across them.

So, the latest “thing” now is selling systems using “Raw IOPS” numbers.

Simply put, some vendors are selling based on the aggregate IOPS the system will do based on per-disk statistics and nothing else

They are not providing realistic performance estimates for the proposed workload, with the appropriate RAID type and I/O sizes and hot vs cold data and what the storage controller overhead will be to do everything. That’s probably too much work. 

For example, if one assumes 200x IOPS per disk, and 200 such disks are in the system, this vendor is showing 40,000 “Raw IOPS”.

This is about as useful as shoes on a snake. Probably less.

The reality is that this is the ultimate “it depends” scenario, since the achievable IOPS depend on far more than how many random 4K IOPS a single disk can sustain (just doing RAID6 could result in having to divide the raw IOPS by 6 where random writes are concerned – and that’s just one thing that affects performance, there are tons more!)

Please refer to prior articles on the subject such as the IOPS/latency primer here and undersizing here. And some RAID goodness here.

If you’re a customer reading this, you have the ultimate power to keep vendors honest. Use it!


Technorati Tags: ,

An explanation of IOPS and latency

<I understand this extremely long post is redundant for seasoned storage performance pros – however, these subjects come up so frequently, that I felt compelled to write something. Plus, even the seasoned pros don’t seem to get it sometimes… :) >

IOPS: Possibly the most common measure of storage system performance.

IOPS means Input/Output (operations) Per Second. Seems straightforward. A measure of work vs time (not the same as MB/s, which is actually easier to understand – simply, MegaBytes per Second).

How many of you have seen storage vendors extolling the virtues of their storage by using large IOPS numbers to illustrate a performance advantage?

How many of you decide on storage purchases and base your decisions on those numbers?

However: how many times has a vendor actually specified what they mean when they utter “IOPS”? :)

For the impatient, I’ll say this: IOPS numbers by themselves are meaningless and should be treated as such. Without additional metrics such as latency, read vs write % and I/O size (to name a few), an IOPS number is useless.

And now, let’s elaborate… (and, as a refresher regarding the perils of ignoring such things wnen it comes to sizing, you can always go back here).


One hundred billion IOPS…


I’ve competed with various vendors that promise customers high IOPS numbers. On a small system with under 100 standard 15K RPM spinning disks, a certain three-letter vendor was claiming half a million IOPS. Another, a million. Of course, my customer was impressed, since that was far, far higher than the number I was providing. But what’s reality?

Here, I’ll do one right now: The old NetApp FAS2020 (the older smallest box NetApp had to offer) can do a million IOPS. Maybe even two million.

Go ahead, prove otherwise.

It’s impossible, since there is no standard way to measure IOPS, and the official definition of IOPS (operations per second) does not specify certain extremely important parameters. By doing any sort of I/O test on the box, you are automatically imposing your benchmark’s definition of IOPS for that specific test.


What’s an operation? What kind of operations are there?

It can get complicated.

An I/O operation is simply some kind of work the disk subsystem has to do at the request of a host and/or some internal process. Typically a read or a write, with sub-categories (for instance read, re-read, write, re-write, random, sequential) and a size.

Depending on the operation, its size could range anywhere from bytes to kilobytes to several megabytes.

Now consider the following most assuredly non-comprehensive list of operation types:

  1. A random 4KB read
  2. A random 4KB read followed by more 4KB reads of blocks in logical adjacency to the first
  3. A 512-byte metadata lookup and subsequent update
  4. A 256KB read followed by more 256KB reads of blocks in logical sequence to the first
  5. A 64MB read
  6. A series of random 8KB writes followed by 256KB sequential reads of the same data that was just written
  7. Random 8KB overwrites
  8. Random 32KB reads and writes
  9. Combinations of the above in a single thread
  10. Combinations of the above in multiple threads
…this could go on.

As you can see, there’s a large variety of I/O types, and true multi-host I/O is almost never of a single type. Virtualization further mixes up the I/O patterns, too.

Now here comes the biggest point (if you can remember one thing from this post, this should be it):

No storage system can do the same maximum number of IOPS irrespective of I/O type, latency and size.

Let’s re-iterate:

It is impossible for a storage system to sustain the same peak IOPS number when presented with different I/O types and latency requirements.


Another way to see the limitation…

A gross oversimplification that might help prove the point that the type and size of operation you do matters when it comes to IOPS. Meaning that a system that can do a million 512-byte IOPS can’t necessarily do a million 256K IOPS.

Imagine a bucket, or a shotshell, or whatever container you wish.

Imagine in this container you have either:

  1. A few large balls or…
  2. Many tiny balls
The bucket ultimately contains about the same volume of stuff either way, and it is the major limiting factor. Clearly, you can’t completely fill that same container with the same number of large balls as you can with small balls.
IOPS containers













They kinda look like shotshells, don’t they?

Now imagine the little spheres being forcibly evacuated rapildy out of one end… which takes us to…


Latency matters

So, we’ve established that not all IOPS are the same – but what is of far more significance is latency as it relates to the IOPS.

If you want to read no further – never accept an IOPS number that doesn’t come with latency figures, in addition to the I/O sizes and read/write percentages.

Simply speaking, latency is a measure of how long it takes for a single I/O request to happen from the application’s viewpoint.

In general, when it comes to data storage, high latency is just about the least desirable trait, right up there with poor reliability.

Databases especially are very sensitive with respect to latency – DBs make several kinds of requests that need to be acknowledged quickly (ideally in under 10ms, and writes especially in well under 5ms). In particular, the redo log writes need to be acknowledged almost instantaneously for a heavy-write DB – under 1ms is preferable.

High sustained latency in a mission-critical app can have a nasty compounding effect – if a DB can’t write to its redo log fast enough for a single write, everything stalls until that write can complete, then moves on. However, if it constantly can’t write to its redo log fast enough, the user experience will be unacceptable as requests get piled up – the DB may be a back-end to a very busy web front-end for doing Internet sales, for example. A delay in the DB will make the web front-end also delay, and the company could well lose thousands of customers and millions of dollars while the delay is happening. Some companies could also face penalties if they cannot meet certain SLAs.

On the other hand, applications doing sequential, throughput-driven I/O (like backup or archival) are nowhere near as sensitive to latency (and typically don’t need high IOPS anyway, but rather need high MB/s).

It follows that not all I/O sizes and I/O operations are subject to the same latency requirements.

Here’s an example from an Oracle DB – a system doing about 15,000 IOPS at 25ms latency. Doing more IOPS would be nice but the DB needs the latency to go a lot lower in order to see significantly improved performance – notice the increased IO waits and latency, and that the top event causing the system to wait is I/O:

AWR example Now compare to this system (different format this data but you’ll get the point):

Notice that, in this case, the system is waiting primarily for CPU, not storage.

A significant amount of I/O wait is a good way to determine if storage is an issue (there can be other latencies outside the storage of course – CPU and network are a couple of usual suspects). Even with good latencies, if you see a lot of I/O waits it means that the application would like faster speeds from the storage system.

But this post is not meant to be a DB sizing class. Here’s the important bit that I think is confusing a lot of people and is allowing vendors to get away with unrealistic performance numbers:

It is possible (but not desirable) to have high IOPS and high latency simultaneously.

How? Here’s a, once again, oversimplified example:

Imagine 2 different cars, both with a top speed of 150mph.

  • Car #1 takes 50 seconds to reach 150mph
  • Car #2 takes 200 seconds to reach 150mph

The maximum speed of the two cars is identical.

Does anyone have any doubt as to which car is actually faster? Car #1 indeed feels about 4 times faster than Car #2, even though they both hit the exact same top speed in the end.

Let’s take it an important step further, keeping the car analogy since it’s very relatable to most people (but mostly because I like cars):

  • Car #1 has a maximum speed of 120mph and takes 30 seconds to hit 120mph
  • Car #2 has a maximum speed of 180mph, takes 50 seconds to hit 120mph, and takes 200 seconds to hit 180mph

In this example, Car #2 actually has a much higher top speed than Car #1. Many people, looking at just the top speed, might conclude it’s the faster car.

However, Car #1 reaches its top speed (120mph) far faster than Car # 2 reaches that same top speed of Car #1 (120mph).

Car #2 continues to accelerate (and, eventually, overtakes Car #1), but takes an inordinately long amount of time to hit its top speed of 180mph.

Again – which car do you think would feel faster to its driver?

You know – the feeling of pushing the gas pedal and the car immediately responding with extra speed that can be felt? Without a large delay in that happening?

Which car would get more real-world chances of reaching high speeds in a timely fashion? For instance, overtaking someone quickly and safely?

Which is why car-specific workload benchmarks like the quarter mile were devised: How many seconds does it take to traverse a quarter mile (the workload), and what is the speed once the quarter mile has been reached?

(I fully expect fellow geeks to break out the slide rules and try to prove the numbers wrong, probably factoring in gearing, wind and rolling resistance – it’s just an example to illustrate the difference between throughput and latency, I had no specific cars in mind… really).


And, finally, some more storage-related examples…

Some vendor claims… and the fine print explaining the more plausible scenario beneath each claim:

“Mr. Customer, our box can do a million IOPS!”

512-byte ones, sequentially out of cache.

“Mr. Customer, our box can do a quarter million random 4K IOPS – and not from cache!”

at 50ms latency.

“Mr. Customer, our box can do a quarter million 8K IOPS, not from cache, at 20ms latency!”

but only if you have 1000 threads going in parallel.

“Mr. Customer, our box can do a hundred thousand 4K IOPS, at under 20ms latency!”

but only if you have a single host hitting the storage so the array doesn’t get confused by different I/O from other hosts.

Notice how none of these claims are talking about writes or working set sizes… or the configuration required to support the claim.


What to look for when someone is making a grandiose IOPS claim

Audited validation and a specific workload to be measured against (that includes latency as a metric) both help. I’ll pick on HDS since they habitually show crazy numbers in marketing literature.

For example, from their website:



It’s pretty much the textbook case of unqualified IOPS claims. No information as to the I/O size, reads vs writes, sequential or random, what type of medium the IOPS are coming from, or, of course, the latency…

However, that very same box almost makes 270,000 SPC-1 IOPS with good latency in the audited SPC-1 benchmark:


Last I checked, 270,000 was almost 15 times less than 4,000,000. Don’t get me wrong, 260,000 low-latency IOPS is a great SPC-1 result, but it’s not 4 million SPC-1 IOPS.

Check my previous article on SPC-1 and how to read the results here. And if a vendor is not posting results for a platform – ask why.


Where are the IOPS coming from?

So, when you hear those big numbers, where are they really coming from? Are they just ficticious? Not necessarily. So far, here are just a few of the ways I’ve seen vendors claim IOPS prowess:

  1. What the controller will theoretically do given unlimited back-end resources.
  2. What the controller will do purely from cache.
  3. What a controller that can compress data will do with all zero data.
  4. What the controller will do assuming the data is at the FC port buffers (“huh?” is the right reaction, only one three-letter vendor ever did this so at least it’s not a widespread practice).
  5. What the controller will do given the configuration actually being proposed driving a very specific application workload with a specified latency threshold and real data.
The figures provided by the approaches above are all real, in the context of how the test was done by each vendor and how they define “IOPS”. However, of the (non-exhaustive) options above, which one do you think is the more realistic when it comes to dealing with real application data?


What if someone proves to you a big IOPS number at a PoC or demo?

Proof-of-Concept engagements or demos are great ways to prove performance claims.

But, as with everything, garbage in – garbage out.

If someone shows you IOmeter doing crazy IOPS, use the information in this post to help you at least find out what the exact configuration of the benchmark is. What’s the block size, is it random, sequential, a mix, how many hosts are doing I/O, etc. Is the config being short-stroked? Is it coming all out of cache?

Typically, things like IOmeter can be a good demo but that doesn’t mean the combined I/O of all your applications’ performance follows the same parameters, nor does it mean the few servers hitting the storage at the demo are representative of your server farm with 100x the number of servers. Testing with as close to your application workload as possible is preferred. Don’t assume you can extrapolate – systems don’t always scale linearly.


Factors affecting storage system performance

In real life, you typically won’t have a single host pumping I/O into a storage array. More likely, you will have many hosts doing I/O in parallel. Here are just some of the factors that can affect storage system performance in a major way:


  1. Controller, CPU, memory, interlink counts, speeds and types.
  2. A lot of random writes. This is the big one, since, depending on RAID level, the back-end I/O overhead could be anywhere from 2 I/Os (RAID 10) to 6 I/Os (RAID6) per write, unless some advanced form of write management is employed.
  3. Uniform latency requirements – certain systems will exhibit latency spikes from time to time, even if they’re SSD-based (sometimes especially if they’re SSD-based).
  4. A lot of writes to the same logical disk area. This, even with autotiering systems or giant caches, still results in tremendous load on a rather limited set of disks (whether they be spinning or SSD).
  5. The storage type used and the amount – different types of media have very different performance characteristics, even within the same family (the performance between SSDs can vary wildly, for example).
  6. CDP tools for local protection – sometimes this can result in 3x the I/O to the back-end for the writes.
  7. Copy on First Write snapshot algorithms with heavy write workloads.
  8. Misalignment.
  9. Heavy use of space efficiency techniques such as compression and deduplication.
  10. Heavy reliance on autotiering (resulting in the use of too few disks and/or too many slow disks in an attempt to save costs).
  11. Insufficient cache with respect to the working set coupled with inefficient cache algorithms, too-large cache block size and poor utilization.
  12. Shallow port queue depths.
  13. Inability to properly deal with different kinds of I/O from more than a few hosts.
  14. Inability to recognize per-stream patterns (for example, multiple parallel table scans in a Database).
  15. Inability to intelligently prefetch data.


What you can do to get a solution that will work…

You should work with your storage vendor to figure out, at a minimum, the items in the following list, and, after you’ve done so, go through the sizing with them and see the sizing tools being used in front of you. (You can also refer to this guide).

  1. Applications being used and size of each (and, ideally, performance logs from each app)
  2. Number of servers
  3. Desired backup and replication methods
  4. Random read and write I/O size per app
  5. Sequential read and write I/O size per app
  6. The percentages of read vs write for each app and each I/O type
  7. The working set (amount of data “touched”) per app
  8. Whether features such as thin provisioning, pools, CDP, autotiering, compression, dedupe, snapshots and replication will be utilized, and what overhead they add to the performance
  9. The RAID type (R10 has an impact of 2 I/Os per random write, R5 4 I/Os, R6 6 I/Os – is that being factored?)
  10. The impact of all those things to the overall headroom and performance of the array.

If your vendor is unwilling or unable to do this type of work, or, especially, if they tell you it doesn’t matter and that their box will deliver umpteen billion IOPS – well, at least now you know better :)


Technorati Tags: , , , , , , , , , , , ,