NetApp Enterprise Grade Flash

June 23rd marked the release of new NetApp Enterprise Flash technology. The release consists of:

  • New ONTAP 8.3.1 with significant performance, feature and usability enhancements
  • New Inline Storage Efficiencies
  • New All-Flash FAS systems (AFF works only with SSDs)
  • New, aggressive pricing model
  • New maintenance options (price protection on warranty for up to 7 years, even if you buy less warranty up front)

Enterprise Grade Flash

So what does “Enterprise Grade Flash” mean?

Simple:

The combination of new technologies that Flash made possible, like high performance and inline storage efficiencies, plus ease of use, plus Enterprise features such as:

  • Deep application integration for clones, backups, restores, migrations
  • Comprehensive automation
  • Scale up
  • Scale out
  • Non-disruptive everything
  • Multiprotocol (SAN and NAS in the same system)
  • Secure multi-tenancy
  • Encryption (FIPS 140-2 validated hardware)
  • Hardened storage OS
  • Enterprise hardware
  • Comprehensive backup, cloning, archive
  • Comprehensive integration with leading backup software
  • Synchronous replication
  • Active-Active Datacenters
  • The ability to have AFF systems in the same cluster as hybrid
  • Seamless data movement between All-Flash and Hybrid
  • Easy replication between All-Flash and Hybrid
  • Cloud capable (storage OS ability to run in the cloud) – with replication to and from the cloud instances of ONTAP
  • QoS and SLO provisioning
  • Inline Foreign LUN Import (to make migrations from third-party arrays less impactful to the users)

The point is that competitor All-Flash offerings typically focus on a few of these points (for example, performance, ease of use and maybe inline storage efficiencies) but are severely lacking in the rest. This limited vision approach creates inflexibility and silos, and neither inflexibility nor silos are particularly desirable elements in Enterprise IT.

But what if you could have Flash without compromises? That’s what we are offering with the new AFF systems. A high performance offering with all the “coolness” but also all the “seriousness” and features Enterprise Grade storage demands.

It’s a bit like this Venn diagram:

NewImage

AFF simply offers far more flexibility than All-Flash competitors. There may be certain things AFF doesn’t do vs some of the competitors, but they pale vs what AFF does and the competitors cannot.

And even if you don’t need all the features – at least they’re there waiting for you in case you do need them in the future (for instance, you may not need to replicate to the cloud and back today, but knowing that you have the option is reassuring in case your IT strategy changes).

Architecture

It’s far harder to add serious enterprise data management features to newly built architectures than add new architecture benefits to a platform that already had the Enterprise Grade stuff down pat.

WAFL (the block layout engine of ONTAP) is already naturally well suited to working with SSDs:

  • Avoids modifying data in place
  • Writes to free space
  • Performs I/O coalescing in order to lump many operations in a single large I/O
  • Preserves the temporal locality of user data with metadata to further reduce I/O
  • Achieves a naturally low Write Amplification Factor (it’s worth noting that in all the years we’ve been selling Flash and after hundreds of PB, we have had exactly zero worn out SSDs – they’re not even close to wearing out).

So we optimized ONTAP where it mattered, while keeping the existing codebase where needed. It helps that the ONTAP architecture is already modular – it was fairly straightforward to enhance the parts of the code that dealt with storage media, for instance, or the parts that dealt with the I/O path. This significant optimization started with 8.3.0 and continued with 8.3.1.

The overall effect has been dramatically reduced latencies, enhanced code parallelism, increased resiliency, while at the same time enabling inline storage efficiencies. For customers still on 8.2.x and prior, or on 7-mode ONTAP, the differences with 8.3.1 will be pretty extreme… 🙂

Ease of Use

New with ONTAP 8.3.1 is a completely redesigned administrative GUI, and a SAN-optimized config for the ability to be serving I/O in 15 minutes from unpacking the system.

In addition, wizards allow the easy creation of LUNs for Databases with just 3 questions, and ONTAP can now be upgraded from the GUI.

Storage Efficiencies

ONTAP has had various flavors of storage efficiencies for a while. Those efficiencies typically had to be turned on manually, and often affected performance.

With ONTAP 8.3.1, Inline Compression is on by default, as is Inline Zero Deduplication (very helpful in VM deployments that use EagerZeroThick). In addition, Always On Deduplication is also available – a deduplication that runs very frequently (every 5 minutes).

In conjunction with already excellent thin provisioning plus state-of-the-art cloning and snapshot capabilities, some excellent efficiency ratios are possible. We can show up to 30:1 for certain kinds of VDI deployments, while things like Databases will not be able to be squeezed quite that much (especially if DB-side compression is already active). The overall efficiency ratio will vary depending on how the system is used.

Ultimately, Storage Efficiencies aim to reduce overall cost. Focus not so much on the actual efficiency ratio. Instead look at the effective price/TB. The efficiency differences between most vendors are probably less than most vendors want you to think they are – in real terms you will not save more than a few SSD’s worth of capacity. The real value lies elsewhere.

Performance

The AFF systems are fast. A maximum-size AFF cluster will do about 4 million IOPS at 1ms latency (8K random, with inline efficiencies). Throughput-wise, 100GB/s is possible.

We wanted to have performance stop being a discussion point except in the most extreme of situations. The reality is that any top-tier Flash solution will be fast. Once again – the real value lies elsewhere.

For the curious, here’s an IOPS vs Latency chart for a 2-node AFF8080 system, given that this level of performance is more than enough for the vast majority of customers out there (the max speed of a cluster is 12x what’s shown in this graph):

NewImage

Many optimizations were implemented in ONTAP 8.3.1 – certain operations are over 4x faster than with ONTAP 8.2.x, and almost 50% faster than with 8.3.0. SSDs, being as fast as they are, benefit from those optimizations the most.

If you want more performance proof points, we have previously shown SSD performance for a very difficult workload (over 60% writes, combination of block sizes, random and sequential I/O) with 8.3.0 in our SPC-1 benchmarks (needs to be updated for 8.3.1 but even the 8.3.0 result is solid). We also have SQL, Oracle and VDI Technical Reports.

We are also always happy to demonstrate these systems for you.

Pricing

There are some significant pricing changes, leading to an overall far more cost-effective solution. For instance, the cost delta between different controller models with the same amount of storage is far smaller than in the past. The scalability of all the systems is the same (240 SSDs * 1.6TB max currently per 2 nodes). The only difference is performance and the amount of connectivity possible.

Warranty pricing is now stable even if you buy 3 years up front and extend later on.

Oh – and all AFF models now include all NetApp FAS software: All the protocols, all the SnapManager application integration modules, replication, the works.

Final Words

The pace of innovation at NetApp is accelerating dramatically. We had to work hard to bring Clustered ONTAP to feature parity with the older 7-mode, which delayed things. Now with  8.3.x dropping 7-mode altogether, we have many more developers to focus on improving Clustered ONTAP. The big enhancements in 8.3.1 came very rapidly after 8.3.0 became GA… and there’s a lot more to come soon.

Make no mistake: NetApp is a storage giant and has an Engineering organization not to be trifled with.

Now, how do you like your Flash? With or without compromises? 🙂

D

Technorati Tags: , , , , , , ,

6 Replies to “NetApp Enterprise Grade Flash”

  1. Great article – I would love to see a technical response to this from the likes of Pure, XtremIO and Nimble. I am sure there are a few things that these products do better, but there are an enormous number of things that an AFF/FAS cluster does better – there is just no contest.

    I wrote my own blog on this (http://blog.snsltd.co.uk/netapp-has-just-made-2015-the-year-of-the-affordable-all-flash-array-part-1/) and we seem to have come to the same conclusion.

    As far as I am aware there has been a change around extended maintenance, the latest FAQs suggest that this is no longer the case – you might want to check it out.

  2. What about all the deswizzling and reallocation needed because of the way wafl works? Surely all that block movement is creating more writes on the SSD’s?

    1. Hi Chris,

      What concern is behind your question?

      We’ve had zero (and I mean zero) SSDs wearing out all these years. And we keep optimizing ONTAP.

      There are many ways to make SSDs more reliable. We’ve incorporated many changes including working with SSD vendors to modify the firmware to allow for more efficient writes for multiple segregated write streams and prolong longevity.

      Check Jeff Kinmel’s comment here:

      http://storagemojo.com/2015/06/29/the-storage-tipping-point/

      Thx

      D

  3. Hi Dimitris,
    Thanks for your reply. My concern is not about reducing the wear on the SSD’s. We have premium support on any storage kit we run so any failures aren’t an issue because the drives are covered under warranty and replaced quickly.

    My concern and also question is why would I want reallocation and any other block shuffling type operations running on an SSD? This is unnecessary wear but, more importantly, IO taken up. You claim that WAFL is optimised for SSD’s. The way it writes to free space is but then the background processes that have been designed to get around fragmentation on spinning disks caused by this way of writing down to disks isn’t.

    I’d prefer my disk lasted 5 years instead of 7 but gave me all available IO.

    1. Hi Chris, maybe I can clarify a bit:

      We don’t automatically do nor do we recommend doing reallocations in AFF.

      As of the 8.3 ONTAP train, the way I/O is done is rather dramatically different.

      Any performance numbers you see on AFF show sustainable performance, not peak with degradation later.

      So yes, your SSDs will perform well long-term in AFF.

      For hybrid systems we still recommend reallocations but that’s a totally different case and not applicable to AFF.

      Does that clear things?

      Thx

      D

Leave a comment for posterity...